Synthese und Kristallstruktur eines gemischtvalenten Lithium–Tantalnitrids $Li_2Ta_3N_5$

Th. Brokamp und H. Jacobs

Fachbereich Chemie der Universität Dortmund, Postfach 500 500, W-4600 Dortmund 50 (F.R.G.)

(Eingegangen am 20. Februar 1991)

Zusammenfassung

Lithium, Lithiumnitrid oder -amid (Li, Li₃N, LiNH₂) reagiert mit Tantal(V)-nitrid (Ta₃N₅) zu Li₂Ta₃N₅. Die reine Verbindung ist zugänglich, wenn LiNH₂ und Ta₃N₅ in Hochdruckautoklaven (550 °C; $p(NH_3) = 0,6$ GPa; 5 Tage) zur Reaktion gebracht werden. Ein im Autoklav herrschender Temperaturgradient ermöglicht hierbei die Trennung von in überkritischem Ammoniak schwerlöslichem Li₂Ta₃N₅ von leichtlöslichem LiNH₂. Röntgen- und Neutronenbeugungsexperimente an Pulvern führten zur Bestimmung der monoklinen Struktur (C2/m; Z=4; a=9,812(2) Å; b=4,201(1) Å; c=9,640(2) Å, $\beta=90,93(1)^{\circ}$; geordnete Kochsalzvariante). Die Ta–N-Teilstruktur zeigt große Ähnlichkeit zur Raumtemperaturmodifikation von Ti₃O₅. Kurze Abstände d(Ta-Ta)=2,90 und 2,96 Å sowie der Diamagnetismus der Verbindung weisen auf Ta–Ta-Bindungen hin.

Abstract

Lithium, lithium nitride or lithium amide (Li, Li₃N, LiNH₂) reacts with tantalum(V)nitride (Ta₃N₅) to form Li₂Ta₃N₅. The pure compound is obtained when the reaction between LiNH₂ and Ta₃N₅ is carried out in a high pressure autoclave (550 °C; $p(NH_3) = 0.6$ GPa; 5 days). A temperature gradient within the autoclave causes the separation of an excess of well soluble LiNH₂ from sparingly soluble Li₂Ta₃N₅ in supercritical ammonia.

Powder X-ray and neutron diffraction data showed that the structure is monoclinic $(C2/m; Z=4; a=9.812(2) \text{ Å}; b=4.201(1) \text{ Å}; c=9.640(2) \text{ Å}; \beta=90.93(1)^\circ)$ and of an ordered sodium chloride type. The Ta–N part of the structure resembles the room temperature modification of Ti₃O₅. The short interatomic distances d(Ta-Ta) of 2.90 Å and 2.96 Å and the diamagnetism of the compound suggest the presence of Ta–Ta bonds.

1. Einführung

Bei systematischen Versuchen zur Synthese von ternären Nitriden $MTaN_2$ (M: Alkalimetall) [1] wurde $Li_2Ta_3N_5$ bereits von-Pinkowski [2] präpariert. Durch geänderte Synthesebedingungen gelingt jetzt die Darstellung der reinen Verbindung und ermöglicht damit quantitativ chemische Analysen sowie die Durchführung von Röntgen- und Neutronenbeugungsexperimenten an Pulvern.

2. Experimentelles

2.1. Darstellung

 Ta_3N_5 wird durch Umsetzung von Ta_2O_5 (99,999%, Fa. Ventron, Karlsruhe) mit NH₃ (2.8, Fa. Messer Griesheim G.m.b.H., Düsseldorf) in einer Strömungsapparatur [3, 4] dargestellt und röntgenographisch [3, 5] charakterisiert. Lithiumamid wird durch Umsetzung von Lithium (Reinheit >99,9%, Fa, Ventron G.m.b.H., Karlsruhe; ⁷Li: Reinheit >99,6% wurde von der KFA Jülich zur Verfügung gestellt) mit Ammoniak (5.0, Fa. Messer Griesheim) in Autoklaven [6] erhalten. Lithiumnitrid (Reinheit >99,6%, Fa. Stream Chemicals G.m.b.H., Kehl) wurde als Pulver bezogen. Die Handhabung der Substanzen erfolgt in einem mit Argon gefüllten Handschuhkasten [6].

 $Li_2Ta_3N_5$ wird durch Reaktion von Ta_3N_5 mit Lithium, Li_3N oder $LiNH_2$ bei Temperaturen von 400 bis 800 °C in Autoklaven hergestellt. Ein Lithium-Überschuß ergibt Nebenprodukte, die sich nicht vom gewünschten Produkt abtrennen lassen.

Zu einem nebenprodukt- und eduktfreien Präparat führt die Ammonothermalsynthese [6] von $\text{Li}_2\text{Ta}_3\text{N}_5$. Dazu wird ein Gemisch von ca. 10 mmol Ta_3N_5 mit 30 mmol LiNH₂ (geringer Überschuß) in eine seitlich teilweise perforierte Edelstahlampulle gegeben und diese in einem Autoklav bei einem NH₃-Druck von 0,6 GPa und einer mittleren Temperatur von 550 °C für 5 Tage erwärmt. Ein Temperaturgradient im Autoklav Führt zur Trennung des nicht transportierbaren Produktes vom im kalten Teil des Autoklavs kristallisierenden, überschüssigen Lithiumamid. Aus dem abgekühlten, geöffneten Autoklav wird die Edelstahlampulle entnommen, in der sich das Produkt befindet.

Das so erhaltene schwarze produkt ist röntgenographisch rein, eine Aufschlämmung in Wasser reagiert sehr schwach basisch. Eine Titration der Base mit einer Säure führt wegen der sehr langsamen Hydrolyse von $\rm Li_2Ta_3N_5$ nicht zu einem definierten Endpunkt. Die Substanz verhält sich gegen Luft weitgehend inert, eine 6-monatige Exposition läßt optisch und röntgenographisch keine Veränderungen erkennen.

Andere Tantalnitride als Ta_3N_5 , wie beispielsweise ϵ -TaN oder ϑ -TaN oder auch der Einsatz von $TaCl_5$ als Edukt führen nicht zum gewünschten Produkt. Umsetzungen von Ta_3N_5 bei Raumtemperatur mit *n*-butyl-Lithium deuten wegen der Farbänderung des roten Ta_3N_5 -Pulvers nach braun auf zumindest an der Oberfläche eintretende Intercalation von Lithium. Röntgenographisch ist keine Veränderung feststellbar. Ähnliche Umsetzungen von TiO_2 (Anatas) mit *n*-butyl-Lithium ergeben ein Li_xTiO₂; *x*: 0–0,7 [7].

2.2. Quantitative naßchemische Analyse

Die mit KHSO₄ aufgeschlossene Substanz wird in einer Weinsäure-Lösung [8] aufgenommen. Lithium wird flammenphotometrisch mit einem Beckman Atomic Absorption Spectrophotometer (1248, Fa. Beckman Instruments, München), Tantal gravimetrisch nach Fällung mit Tannin [8] und Glühen bei 900 °C als Ta₂O₅ bestimmt. Der Stickstoffgehalt wird mit einer Verbren-

	Produkt 1		Produkt 2	
	Gew.%	Atomverh.	Gew.%	Atomverh.
Lithium	2,2	2,03	2,0	1,83
Tantal	82	2,88	83	2,88
Stickstoff	11	5	11	5
Summe Gew.%	95,2		96,0	

 ${\rm Li}_2{\rm Ta}_3{\rm N}_5,$ Analysenergebnisse für zwei Produkte, Atomverhältnis normiert auf 5.0 N

TABELLE 2

Meß- und auswertungstechnische Daten^a zur Röntgen- und Neutronenbeugung an $Li_2Ta_3N_5$

	Röntgenbeugung	Neutronenbeugung
Meßbereich(Grad) Schrittweite(Grad) Wellenlänge(Å)	7 ≤ 2θ ≤ 82 0,05 Cu Kα 1,5405 1,5443	$4,8 \le 2\theta \le 82$ 0,1 1,09 ₅
Gitterkonstanten a(Å) b(Å) c(Å) $\beta(Grad)$	9,812(2) 4,201(1) 9,640(2) 90,93(1)	
Volumen der EZ(Å ³) Zahl der Reflexe $> 5\% I_{obs, Max}$	397,3(3) 328 (α ₁ u. α ₂) 65	- 422 70
Zahl der verf. Para. Struktur Tantallagen Lithiumlagen Stickstofflagen	23 8 6 -	20 15 - 4 10
Temperaturpar. $B(Å^2)$ Profil Untergrund Gitterkonst. Zeroshift Halbwertsbreiten Skalierung	2 15 6 4 1 3 1	1 5 - 1 3 1
$R_{\text{profil}}(\%)$ $R_{\text{profil}}, \text{ Gew.}(\%)$ $R_{\text{Bragg}}(\%)$	5,03 6,49 3,73	1,46 1,94 0,75

^aStandardabweichungen in Klammern.

x	z	Atom	x	z
0,140(1)	0,050(1)	N1	0,653(3)	0,058(4)
0,760(1)	0,256(1)	N2	0,250(2)	0,250(4)
0,058(1)	0,359(1)	N3	0,577(3)	0,347(4)
0,37(1)	0,47(1)	N4	0,947(3)	0,149(4)
0,42(1)	0,18(1)	N5	0,862(3)	0,442(4)
	x 0,140(1) 0,760(1) 0,058(1) 0,37(1) 0,42(1)	$\begin{array}{c ccccc} x & z \\ \hline 0,140(1) & 0,050(1) \\ 0,760(1) & 0,256(1) \\ 0,058(1) & 0,359(1) \\ 0,37(1) & 0,47(1) \\ 0,42(1) & 0,18(1) \end{array}$	x z Atom 0,140(1) 0,050(1) N1 0,760(1) 0,256(1) N2 0,058(1) 0,359(1) N3 0,37(1) 0,47(1) N4 0,42(1) 0,18(1) N5	xzAtomx0,140(1)0,050(1)N10,653(3)0,760(1)0,256(1)N20,250(2)0,058(1)0,359(1)N30,577(3)0,37(1)0,47(1)N40,947(3)0,42(1)0,18(1)N50,862(3)

Lageparameter für Li₂Ta₃N₅, z = 4 Raumgruppen C2/m, alle Atome auf 4*i*: x, 0, j; \bar{x} , 0, \bar{z}

Isotrope Temperaturparameter.

Neutronenbeugung: B_{overall} 0,32(4) Å².

Röntgenbeugung: $B_{\text{Kationen}} 0,47(7) \text{ Å}^2$; $B_{\text{Anionen}} 0,3(4) \text{ Å}^2$.

nungsapparatur (Elemental Analyser-Mod 1106, Fa. Carlo Erba Strumentazione, Mailand) ermittelt.

Die mehrfache Analyse von $Li_2Ta_3N_5$ -Proben zweier Produkte führt zu den in Tabelle 1 dargelegten Ergebnissen.

Die Abweichungen in der Gew.%-Summe vom Sollwert 100% ist relativ hoch. Wahrscheinlich sind sie auf zu niedrige Werte bei der Bestimmung des Tantalgehalts zurückzuführen.

Einige Proben wurden mittels energiedispersive Röntgenspektrometrie (EDAX) untersucht. Es wurde jeweils nur Tantal gefunden.

2.3. Röntgen- und Neutronenbeugung an Pulvern

Guinier-Aufnahmen (Flachpräparate-Guinier, Eichung mit Silizium) von $\text{Li}_2\text{Ta}_3\text{N}_5$ lassen sich – obwohl die Beugungslinien eine sehr große Halbwertsbreite haben und sich an einigen Stellen Reflexe zu einem bis zu 0,5 mm breiten Band überlappen – mit Hilfe des Programms ITO [9] monoklin indizieren. Nach der Auslöschungsbedingung *hkl*: h+k=2n liegt ein *C*-zentriertes Bravaisgitter vor. Die Anordnung der Atome muß sich daher in einer der Raumgruppen C2/m (Nr. 12), Cm (Nr. 8) oder C2 (Nr. 5) beschreiben lassen.

Geometrische Restriktionen wie Gitterkonstanten, Ionenradien, die bekannte Zusammensetzung der Verbindung sowie die Auswertung von integrierten Röntgenbeugungsreflexen (Pattersonsynthese) ermöglichen die Ermittlung eines Strukturmodells [4]. Daraus resultieren Startparameter für die nach der Rietveld-Methode [10] durchgeführte Auswertung (Programm DBW 3.2.1 [11]) von Röntgen- und Neutronenbeugungsdaten (293 K, Cu-Strahlung, Pulverdiffraktometer der Fa. Philips, Eindhoven, Niederlande mit Goniometer PW 1050/25, umgebaut für Schrittmotor-Betrieb, Fa. Steuerungstechnik Skowronek, Jülich, LiF-Monochromator; ⁷Li₂Ta₃N₅-Präparat in einer Vanadium-Küvette, 300 K, $\lambda = 1,09$ Å, KFA Jülich, Reaktor FRJ2, die Messung am Pulverdiffraktometer des Neutronen–Doppeldiffraktometers–SV7 wurde freundlicherweise von Herrn Dr. W. Schäfer durchgeführt, ebenso eine Untergrundund 2 θ -Korrektur der Meßdaten. Der Peak bei 10° 2 θ ist ein gerätebedingtes Artefakt. Der hohe Untergrund der Messung wird durch die fehlende Kollimation

Abb. 1. Röntgenpulverdiffraktogramm von Li₂Ta₃N₅.

Abb. 2. Neutronenpulverdiffraktogramm von ⁷Li₂Ta₃N₅.

der Neutronen auf der Detektorseite verursacht.) Für die Anpassung der Tantallageparameter werden bei festgehaltenen Lageparametern für Stickstoff und Lithium die Daten der Röntgenbeugung, für die Anpassung der Stickstoffund Lithiumlageparameter werden bei festgehaltenen Tantallageparametern die Daten der Neutronenbeugung benutzt. Die Rechnungen mit dem Neutronenbeugungsdatensatz sind bezüglich der Anpassung von Gitterkonstanten

Abb. 3. Verknüpfung der Tantal enthaltenden Stickstoffoktaeder (idealisierte Darstellung); die ungefähren Abmessungen der Elementarzelle sind gestrichelt eingezeichnet.

Gitterkonstanten (monokline Aufstellung) von Li2Ta3N5 und "verwandten" Phasen

Phase	a(Å)	b(Å)	c(Å)	β(Grad)	
Ta ₃ N ₅	10,264	3,893	10,264	90,00	
Anosovit	9,474	3,754	9,734	90,00	
H-Ti ₃ O ₅	9,82	3,78	9,97	91,0	
L-Ti ₃ O ₅	9,752(1)	3,8020(5)	9,442(1)	91,55(1)	
Li ₂ Ta ₃ N ₅	9,812(2)	4,201(1)	9,640(2)	90,93(1)	

nicht "stabil", es werden daher die mittels Röntgenbeugung bestimmten Werte übernommen. Der ungewöhnlich gute R_{Bragg} der Neutronenbeugung wird durch eine Besonderheit im Programm DBW 3.2.1 verursacht; zur Berechnung der I_{obs} -Werte wird dort über Peak *und* Untergrund integriert.

Meß- und auswertungstechnische Daten findet man in der Tabelle 2. Die Strukturdaten sind in Tabelle 3 zusammengefaßt. Die Abb. 1 und 2 zeigen die ausgewerteten Beugungsdiagramme.

Atom	Param.	Ta_3N_5	Anosovit	$H-Ti_3O_5$	L-Ti ₃ O ₅	$Li_2Ta_3N_5$
Ta(Ti)l	x	0,134	0,134	0,131	0,128	0,140
	z	0,060	0,063	0,061	0,044	0,050
Ta(Ti)2	x	0,802	0,808	0,806	0,779	0,760
	z	0,250	0,250	0,250	0,267	0,256
Ta(Ti)3	\boldsymbol{x}	0,134	0,134	0,131	0,054	0,058
	z	0,440	0,437	0,439	0,366	0,359
N(O)1	x	0,690	0,688	0,690	0,676	0,653
	z	0,073	0,067	0,064	0,060	0,058
N(O)2	x	0,237	0,224	0,250	0,241	0,250
	z	0,250	0,250	0,250	0,245	0,250
N(O)3	x	0,690	0,688	0,690	0,588	0,577
	z	0,427	0,433	0,436	0,345	0,347
N(O)4	x	0,953	0,958	0,963	0,953	0,947
	z	0,119	0,118	0,128	0,158	0,149
N(O)5	x	0,953	0,958	0,963	0,866	0,862
	z	0,381	0,382	0,372	0,441	0,442

Lageparameter für Ta₃N₅, Li₂Ta₃N₅ und Modifikationen des Ti₃O₅ (monokline Aufstellung C2/m, z=4, alle Atome auf 4*i*: x, 0, z; \bar{x} , 0, \bar{z})

TABELLE 6

Abstände d(Ta-N) und d(Ta-Ta) im Å für $Li_2Ta_3N_5$

Tal	N4 2,09(3); $2 \times N1$ 2,11(3); N4 2,13(3); N2 2,19(4); N1 2,30(4); Ta1 2,90(1); Ta3 3,10(1); $2 \times Ta2$ 3,11(1); Ta2 3,12(1) $2 \times Ta1$ 3,17(1)
Ta2	N3 2,01(3); N5 2,04(4); $2 \times N2$ 2,10(2); N4 2,12(3); N1 2,16(3); $2 \times Ta3$ 3,06(1); Ta3 3,08(1); $2 \times Ta1$ 3,11(1); Ta1 3,12(1)
Ta3	N5 2,05(4); N5 2,10(3); $2 \times N3$ 2,11(3); N2 2,17(3); N4 2,28(3); Ta3 2,95(1); $2 \times Ta2$ 3,05(1); Ta2 3,07(1); Ta1 3,10(1)

Versuche, die Daten in den Raumgruppen Cm oder C2 zu verfeinern, konvergieren nicht; das Programm bricht die Berechnungen stets ohne Ergebnis ab.

2.4. Magnetische und elektrische Untersuchungen

Magnetische Messungen (Faraday-Methode; Waage Typ 4411, Fa. Sartorius-Werke, Göttingen; Magnet B-SU 10/15, Fa. Bruker, Karlsruhe) an *ca*. 60 mg Substanz, die frei von ferromagnetischen Verunreinigungen ist, zeigen bei Raumtemperatur (298 K) diamagnetisches Verhalten ($\chi_{mol} = 20 \times 10^{-6}$ cg mol⁻¹).

Messungen mit einem einfachen Ohmmeter (2-Punkt-Messung) zeigen an Preßlingen Nichtleitung bzw. Widerstände im M Ω -Bereich.

3. Diskussion

Während die Auswertung der Röntgenbeugungsdaten gut gelingt, treten bei der Auswertung der Neutronenbeugungsdaten aufgrund des relativ hohen Untergrundes und des schlechten Signal-Rausch-Verhältnisses Probleme auf. Der hohe Untergrund wird nicht abgezogen, da er beim Programm DBW 3.2 ein wesentlicher Wert für die Berechnung der Standardabweichungen darstellt [11, 12]. Die große Anzahl an signifikanten Reflexen ermöglicht trotzdem eine hinreichend genaue Bestimmung der Stickstofflageparameter, die Lithiumlageparameter bleiben wegen des geringen Streubeitrags von Lithium ungenau.

(continued)

Abb. 4. (a) $\text{Li}_2\text{Ta}_3\text{N}_5$, zur Andeutung der Koordinationspolyeder um Tantal und Lithium (kleine Kreise) sind die Stickstoffatome (große Kreise) durch Striche verbunden (Dunkle Atome: y = 0,5; helle Atome: y = 0 bzw. 1); (b) Ta $_3\text{N}_5$, zur Andeutung der Koordinationspolyeder um Tantal (kleine Kreise) sind die Stickstoffatome (große Kreise) durch Striche verbunden (Dunkle Atome: x=0,5; helle Atome: x=0 bzw. 1).

Die Zusammensetzung $(Li_2Ta_3)N_5$ deutet bereits darauf hin, daß die Verbindung in einer Variante eines AB-Strukturtypes kristallisiert. Die Atomanordnung läßt sich als eine NaCl-Strukturtypvariante beschreiben. Die Nitrid-Ionen bilden eine annäherend kubisch dichte Packung. In den Oktaederlücken wird geordnet Tantal bzw. Lithium gefunden. Die Abb. 3 zeigt (idealisiert) die Kanten-Verknüpfung der Tantal enthaltenden Stickstoffoktaeder. Man erkennt, wie Blöcke aus sechs Oktaedern jeweils über eine Kante zu treppenartigen Strängen miteinander verknüpft werden. Diese Stränge sind in der Schicht jeweils durch einen Strang Lithium enthaltender Oktaeder getrennt. Da in der folgenden Schicht die Ta-N-Stränge über bzw. unter den Li-Strängen liegen, sind die einzelnen Ta-N-Stränge unter Ausbildung von mit Lithium gefüllten Kanälen dreidimensional verknüpft.

Gestützt wird das dargelegte Strukturmodell nicht nur durch die chemischen Analysen sondern auch durch die Verwandtschaft der durch Lithium-Intercalation und teilweiser Tantalreduktion erzwungenen Veränderung der " \Box_2 Ta₃N₅-Struktur" in die Li₂Ta₃N₅-Struktur mit den in der Literatur beschriebenen Phasen des "Ti₃O₅" [13, 14].

Von Ti₃O₅ werden drei Phasen beschrieben:

(i) Anosovit, ein Mineral, dessen orthorhombische Struktur durch Spuren von Magnesium (oder Eisen) stabilisiert wird;

(ii) High-Ti₃O₅ (im folgenden kurz als H-Ti₃O₅ bezeichnet), die oberhalb 175 °C [14] (Magnéli und Åsbrink geben wahrscheinlich aufgrund einer geringen Verunreinigung ihrer Präparate 120 °C an [13]) stabile Modifikation des Ti₃O₅, welche in einer "geringfügig" monoklin verzerrten Struktur des Anosovits kristallisiert, und

(iii) Low-Ti₃O₅ (im folgenden kurz als L-Ti₃O₅ bezeichnet), die bei Raumtemperatur stabile Modifikation von Ti₃O₅. Die Struktur ergibt sich durch eine weitergehende Verzerrung der H-Ti₃O₅-Struktur.

J. Strähle [5] weist bereits darauf hin, daß Ta_3N_5 und Anosovit isotyp kristallisieren. In Tabelle 4 sind die Gitterkonstanten, in Tabelle 5 die Lageparameter der fünf genannten Verbindungen, (zum besseren Vergleich jeweils in monokliner Aufstellung) zusammengestellt. Ein Vergleich der Ta-N-Teilstruktur im Li₂Ta₃N₅ mit der Struktur des L-Ti₃O₅ ergibt, daß auch sie sehr ähnlich sind. Die Abb. 4(a) und Abb.4(b) zeigen Zeichnungen von Strukturmodellen von Li₂Ta₃N₅ bzw. Ta₃N₅.

Betrachtet man die Bindungsverhältnisse in den beiden Verbindungen genauer, so stellt man charakteristische Unterschiede fest. Im Li₂Ta₃N₅ liegt zumindest ein Ta-Ion reduziert vor. Da die magnetischen Messungen für Li₂Ta₃N₅ Diamagnetismus ergeben, ist (bezogen auf eine Formeleinheit Li₂Ta₃N₅) die Reduktion eines Ta⁵⁺ zu Ta³⁺ bzw. zweier Ta⁵⁺ zu zwei Ta⁴⁺ bei gleichzeitiger Ausbildung einer Ta–Ta-Bindung möglich. Die Bindungsabstände helfen, sich für eines dieser Modelle zu entscheiden (Tabelle 6).

Die Mittelwerte der Abstände $\bar{d}(Ta-N) = 2,16$ Å (Ta1), 2,09 Å (Ta2) und 2,14 Å (Ta3) sind etwas größer als im Ta₃N₅ mit 2,086 Å und 2,091 Å. Kein Wert ragt besonders heraus. Auch die kürzesten und längsten Abstände d(Ta-N) (Li₂Ta₃N₅: 2,01 Å; Ta₃N₅: 1,956 Å bis Li₂Ta₃N₅: 2,30 Å; Ta₃N₅: 2,262 Å) sind in beiden Verbindungen ähnlich.

Die kleinsten Abstände d(Ta-Ta) in Li₂Ta₃N₅ sind dagegen mit 2,90(1) Å (Ta1-Ta1), 2,96(1) Å (Ta3-Ta3) und 3,06(1) Å (Ta3-Ta2) deutlich kleiner als in Ta₃N₅ mit 3,2485(6) Å (Ta1-Ta2') und 3,2506(6) Å (Ta2'-Ta1 [5]). Sie sind eher mit dem kleinsten Abstand d(Ta-Ta) in Tantal (Metall) (2,86 Å) [15], im ϑ -TaN_x (2,89 Å) [16] oder auch im ϵ -TaN (2,91 Å) [17] zu vergleichen.

Auch in L-Ti₃O₅ treten kurze Abstände d(Ti–Ti) auf mit 2,61(1) Å (Ti1–Ti1), 2,77(1) Å (Ti3–Ti3) und 2,818(7) Å (Ti2–Ti3), im α -Ti beträgt der Abstand d(Ti–Ti) = 2,93 Å und im Rutil 2,96 Å [13]. Magnéli und Åsbrink [13] sowie

Abb. 5. (a) Umgebung der Ta1–Ta1-Bindung (Winkel um Ta1: N4, N4: 93(1)°; N4, N1: 86(1)°; N1, N2: 88(1)°; N4, N2: 92(1)°; N1', Ta1: 94(1)°). (b) Umgebung der Ta3–Ta3-Bindung (Winkel um Ta3: N5, N5: 89(1)°; N5, N2: 97(1)°; N2, N4: 89(1)°; N4, N5: 85(1)°; N3', Ta3: 95(1)°).

Goodenough [18] erklären die kurzen Ti–Ti-Abstände in L-Ti₃O₅ durch die Ausbildung von Metall–Metall-Bindungen über Elektronen, die nicht an Metall–Nichtmetall-Bindungen beteiligt sind. Danach sollen die 8 "freien" (nicht an Titan–Sauerstoff-Bindungen beteiligten) Elektronen pro Elementarzelle in zwei 2-Elektronen–2-Zentrenbindungen (Ti1–Ti1) und zwei 2-Elektronen–4-Zentrenbindungen (Ti2–Ti3–Ti3–Ti2) pro Elementarzelle lokalisiert sein. Messungen der spezifischen Leitfähigkeit, des Wärmeflusses (DTA) [14], der magnetischen Suszeptibilität sowie von EPR-Spektren [19] stützen das Bindungsmodell.

Bei $Li_2Ta_3N_5$ sind ebenfalls 8 "freie" (nicht an Lithium–Tantal–Stickstoff-Bindungen beteiligte) Elektronen pro Elementarzelle vorhanden, die Abstände

Abb. 6. Formale Umlagerung einer Schicht des Ta-N-Teilgitters von Ta₃N₅ zu Li₂Ta₃N₅.

d(Ta-Ta) sind aber derart, daß sie besser als vier 2-Elektronen–2-Zentrenbindungen (Ta1–Ta1, Ta3–Ta3) gedeutet werden. Alternativ dazu ließen sich die Bindungsabstände auch als zwei 2-Elektronen–2-Zentrenbindungen (Ta1–Ta1) und einem um Ta2–Ta3 delokalisierten Band erklären. Der wichtigste Unterschied zwischen der Struktur von L-Ti₃O₅ und der Ta–N-Teilstruktur in Li₂Ta₃N₅ besteht darin, daß für L-Ti₃O₅ noch kurze Abstände (2,82 Å) zwischen Ti3 (Höhe 0) und Ti2 (Höhe 0) (Abstand Ti3 (Höhe 0) $2\frac{1}{N}$ Ti2 (Höhe $\frac{1}{2}$): 3,07 Å bestehen, während in Li₂Ta₃N₅ die Abstände von Ta3 (Höhe 0) zu Ta2 (Höhe 0 bzw. $\frac{1}{2}$) mit 3,06(1) Å und 3,07(1) Å nicht signifikant verschieden sind. Das Ergebnis der magnetischen Messung sowie der (qualitative) Leitfähigkeitswert deuten eher auf lokalisierte Elektronen hin. Die Abb. 5(a) und 5(b) zeigen die Umgebung der Metall–Metall-Bindungen durch Stickstoff. Ähnlich kurze Metall–Metall–Abstände in NbCl₄ [20], α -NbI₄ [20] und NbO₂ [21] werden ebenfalls im Sinne einer bindenden Metall–Metall-Wechselwirkung gedeutet.

Li₂Ta₃N₅ entsteht formal durch die gleichzeitige (?) Intercalation von Lithium und Reduktion der Ta₃N₅-Gerüststruktur. In Abb. 6 wird durch Überlagerung der (∞ , 0, ∞)-Schichten von Li₂Ta₃N₅ und Ta₃N₅ (monokline Aufstellung) gezeigt, wie sich die Ta-N-Teilstruktur vom " \Box_2 Ta₃N₅" zu Li₂Ta₃N₅ hin verschiebt. Die Symmetrie der Atomanordnung wird von *Cmcm* translationengleich vom Index 2 nach *C*2/*m* erniedrigt [22]. Beim Ti₃O₅ erfolgt die Phasenumwandlung vom H-Ti₃O₅ zum L-Ti₃O₅ displaziv, d.h. ohne Zerstörung des Kristalls. Dieser Befund legt die Darstellung von Li₂Ta₃N₅-Einkristallen aus Ta₃N₅-Einkristallen und einer Lithium-Verbindung nahe. Ein erster Versuch mit LiNH₂ war jedoch nicht erfolgreich.

Die mittleren N–N-Abstände sind in Li₂Ta₃N₅ etwas kleiner als in Ta₃N₅. Verursacht wird dieses durch die bessere Annäherung der Stickstofflagen an die einer kubisch dichten Packung. Dieses wird sehr gut durch das Volumen der Elementarzellen verdeutlicht: 397,3 Å³ für Li₂Ta₃N₅ und 410,1 Å³ für Ta₃N₅. Trotz der eingebauten Lithiumatome ist das Zellvolumen gesunken. Die bessere Annäherung an die kubisch dichte Packung macht sich in der Spanne der Abstände d(N-N) bemerkbar. Während diese bei Li₂Ta₃N₅ nur von 2,85 Å bis 3,34 Å reicht, findet man bei Ta₃N₅ Werte von 2,62 Å bis 3,63 Å.

Dank

Wir danken Herrn Dr. W. Schäfer, Universität Bonn, Mineralogisches Institut, für die Durchführung der Neutronenbeugung an $Li_2Ta_3N_5$. Der Deutschen Forschungsgemeinschaft und dem Bundesministerium für Forschung und Technologie (Ja2DOR) danken wir für die Unterstützung dieser Arbeit mit Sachbeihilfen.

Literatur

- 1 H. Jacobs und E. von Pinkowski, J. Less-Common Met., 146 (1989) 147.
- 2 E. von Pinkowski, Dissertation, Universität Dortmund, 1988.
- 3 G. Brauer, J. Weidlein und J. Strähle, Z. Anorg. Allg. Chem., 348 (1966) 298.
- 4 Th. Brokamp, Dissertation, Universität Dortmund, 1991.
- 5 J. Strähle, Z. Anorg. Allg. Chem., 402 (1973) 47.
- 6 H. Jacobs und D. Schmidt, Curr. Top. Mater. Sci., 8 (1982) 381.
- 7 D. W. Murphy, M. Greenblatt, S. M. Zahurak, R. J. Cava, J. V. Waszczak, G. W. Hull, Jr., und R. S. Hutton, *Rev. Chim. Miner.*, 19 (1982) 441.
- 8 I. M. Gibalo, Analytical Chemistry of Niobium and Tantalum, Israel Programm for Scientific Translations Ltd., 1968.
- 9 J. W. Visser, *Programm ITO*, *Version 13*, 1987 (Technisch Physischer Dienst Delft, Niederlande).

- 10 H. M. Rietveld, J. Appl. Crystallogr., 2 (1969) 65.
- 11 D. B. Wiles und R. A. Young, J. Appl. Crystallogr., 14 (1981) 149; benutzt wird die von P. Rudolf, Texas A and M University, Department of Chemistry, 1983, erstellte Version 3.2.1.
- 12 D. L. Bish und J. E. Post (eds.), *Reviews in Mineralogy*, Vol. 20: *Modern Powder Diffraction*, The Mineralogical Society of America, Washington, DC, 1989, s. 292.
- 13 A. Magnéli und S. Åsbrink, Acta Crystallogr., 12 (1959) 575.
- 14 C. N. R. Rao, S. Ramdas, R. E. Loehmann und J. M. Honig, J. Solid State Chem., 3 (1971) 83.
- 15 R. W. G. Wyckoff, Crystal Structures, Vol. 2, 2nd edn., Interscience, New York, 1964.
- 16 N. Schönberg, Acta Chem. Scand., 8 (1954) 199; ϑ -TaN_x wird hier noch als δ -TaN_x bezeichnet.
- 17 G. Brauer und K. H. Zapp, Z. Anorg. Allg. Chem., 277 (1954) 129.
- 18 J. B. Goodenough, Metallic oxides, in Progress in Solid State Chemistry, Vol. 5, Pergamon, New York, 1971, s. 349.
- 19 J. F. Houlihan, W. J. Danley und L. N. Mulay, J. Solid State Chem., 12 (1974) 265.
- 20 D. R. Taylor, J. C. Calabrese und E. M. Larsen, Inorg. Chem., 16 (1977) 721.
- 21 R. Pynn, J. D. Axe und R. Thomas, Phys. Rev. B, 13 (1976) 2965.
- 22 Th. Hahn (ed.), *International Tables for Crystallography*, 2nd edn., International Union of Crystallography, Reidel, Dordrecht, 1987.